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ABSTRACT

With declining sequencing costs a promising and affordable tool is emerging in
cancer diagnostics: genomics [1]. By using association studies, genomic variants
that predispose patients to specific cancers can be identified, while by using tumor
genomics cancer types can be characterized for targeted treatment. However, a
severe disparity is rapidly emerging in this new area of precision cancer diagnosis
and treatment planning, one which separates a few genetically well-characterized
populations (predominantly European) from all other global populations. Here
we discuss the problem of population-specific genetic associations, which is driv-
ing this disparity, and present a novel solution–coordinate-based local ancestry–
for helping to address it. We demonstrate our boosting-based method on whole
genome data from divergent groups across Africa and in the process observe sig-
nals that may stem from the transcontinental Bantu-expansion.

1 INTRODUCTION

Cancer genomics depends upon the identification of variants that are associated with particular types
of cancers. Because such variants are deleterious, they are not typically part of the ancient standing
variation spread across all humans; instead they are more recent mutations specific to particular
populations. Indeed, such variants are often present prominently only in particular ethnic groups
due to genetic drift [2]. In addition, most associations are mapped not to causal variants, but to
more common neighboring variants that are present on genotyping arrays. Since these neighboring
variants are linked to the causal variant via correlation structures (linkage) that are specific to each
population, the ancestry of the genomic segment in which the correlated variant is found becomes
crucial. Indeed, as a result of linkage and epistatic effects, genomic variants that are associated with
cancer in one ancestry maybe have no association [3], or may even have an opposite association
[4], in another ancestry. This phenomenon persists even in admixed individuals possessing multiple
ancestries, such as African Americans; in such individuals the ancestry (European or African) of the
specific genomic fragment containing the associated variant has been found to reverse the association
[5]. This phenomenon dubbed ”flip-flop,” is not an unusual case, rather ancestry-specific effects in
genetic association studies are the rule. For this reason, polygenic-risk scores (PRS), increasingly
important to genomic cancer prediction [6], have been found to be several times less accurate when
used on populations of different ancestry from the one on which they were trained [7].

As a result of these ancestry specific effects, accurately identifying the ancestry of each segment
of the genome is becoming increasingly crucial for genomic medicine. Such algorithms, known as
local ancestry inference, have been developed both for historical population genetics [8–15] and for
recreational consumer ancestry products [16], but none have been developed to date for the partic-
ular demands of clinical genomic medicine. Such an algorithm would need to provide ancestry not
as a culturally defined label, but as continuous genetic coordinates that could be used as a covariate
in predication and association algorithms. This method is also important for deconvolving ancestry
effects in genetic association studies. To date, most genome-wide association studies (GWAS) are
conducted in populations of single ancestry (typically European) to avoid confounding effects of an-
cestry on reversing associations. Researchers often avoid admixed populations, for instance African
Americans or Hispanics, who encompass more than one ancestry, and avoid populations with too
much genetic variation or too many diverse sub-populations, as is common within Africa. This has
resulted in over 80% of the individuals in GWAS studies to date stemming from European ancestry
(and only 2% from African ancestry) [17, 18]. A reliable coordinate-based local ancestry algorithm
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would allow such studies to embrace diversity, rather than intentionally eschewing it, by allowing
an additional covariate along the genome to be used (ancestry) to remove the confounding effects
of ancestry-dependent genomic associations. With such a tool, medical researchers would no longer
need to avoid admixed and globally diverse genetic study cohorts.

2 ANCESTRY INFERENCE

Here were present an accurate coordinate-based local ancestry inference algorithm, XGMix, that can
be used for addressing ancestry-specific associations and predictions. XGMix uses modern single
ancestry reference populations to accurately predict the latitude and longitude of the closest modern
source population for each segment of an individual’s genome. These coordinate annotations along
the genome can then be used as covariates for genome-wide association studies (GWAS) and for
polygenic risk score (PRS) predictions.

Estimation of an individual’s ancestry, both globally and locally (i.e. assigning an ancestry esti-
mate to each region of the chromosomal sequence), has been tackled with a wide range of methods
and technologies [8–15]. Local ancestry inference has traditionally been framed as a classification
problem using pre-defined ancestries. Classification approaches provide discrete ancestry labels but
can be highly inaccurate for neighboring populations (or population gradients) and intractable for
genetically diverse populations with multiple sources. Geographical regression along the genome,
although a much more challenging problem, could provide a continuous representation of ancestry
capable of capturing the complexities of worldwide populations.

XGMix consists of two layers of stacked gradient boosted trees (a genomic window-specific layer
and a window aggregating smoother) and can infer local-ancestry with both classification probabili-
ties and geographical coordinates along each phased chromosome. Here we demonstrate XGMix by
training on whole genomes from real individuals from the five African populations included in the
1000 genomes project [19]. We simulate admixed individuals of various generations using Wright-
Fisher simulation [13] to create ground truth labels of ancestry along the genome and split this data
for training and testing. As these reference African populations lie close to a single arc along the
globe we estimate along this arc, getting geographic assignments for each genomic segment.
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Figure 1: (a) The inferred coordinates for each genomic segment of an admixed Kenyan-Nigerian
individual. The model was trained on all indicated African reference populations. (b-c) The inferred
location of each genomic segment of a Kenyan-Nigerian (b) and Kenyan-Gambian (c) individual
using the principal coordinate arc of the reference populations’ locations. The bimodal distribution
of Kenyan segments (green) may reflect the historical Bantu expansion from Cameroon into Kenya.
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berle, E. Hahnen, C. A. Haiman, N. Håkansson, U. Hamann, S. E. Hankinson, E. F. Harkness,
S. N. Hart, W. He, A. Hein, J. Heyworth, P. Hillemanns, A. Hollestelle, M. J. Hooning, R. N.
Hoover, J. L. Hopper, A. Howell, G. Huang, K. Humphreys, D. J. Hunter, M. Jakimovska, A.
Jakubowska, W. Janni, E. M. John, N. Johnson, M. E. Jones, A. Jukkola-Vuorinen, A. Jung, R.
Kaaks, K. Kaczmarek, V. Kataja, R. Keeman, M. J. Kerin, E. Khusnutdinova, J. I. Kiiski, J. A.
Knight, Y.-D. Ko, V.-M. Kosma, S. Koutros, V. N. Kristensen, U. Krüger, T. Kühl, D. Lam-
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longo, J. Peto, M. Pinchev, D. Plaseska-Karanfilska, E. C. Polley, R. Prentice, N. Presneau, D.
Prokofyeva, K. Purrington, K. Pylkäs, B. Rack, P. Radice, R. Rau-Murthy, G. Rennert, H. S.
Rennert, V. Rhenius, M. Robson, A. Romero, K. J. Ruddy, M. Ruebner, E. Saloustros, D. P.
Sandler, E. J. Sawyer, D. F. Schmidt, R. K. Schmutzler, A. Schneeweiss, M. J. Schoemaker, F.
Schumacher, P. Schürmann, L. Schwentner, C. Scott, R. J. Scott, C. Seynaeve, M. Shah, M. E.
Sherman, M. J. Shrubsole, X.-O. Shu, S. Slager, A. Smeets, C. Sohn, P. Soucy, M. C. Southey,
J. J. Spinelli, C. Stegmaier, J. Stone, A. J. Swerdlow, R. M. Tamimi, W. J. Tapper, J. A. Tay-
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